Electrically Controlled Drug Delivery from Graphene Oxide Nanocomposite Films

نویسندگان

  • Cassandra L. Weaver
  • Jaclyn M. LaRosa
  • Xiliang Luo
  • Xinyan Tracy Cui
چکیده

On-demand, local delivery of drug molecules to target tissues provides a means for effective drug dosing while reducing the adverse effects of systemic drug delivery. This work explores an electrically controlled drug delivery nanocomposite composed of graphene oxide (GO) deposited inside a conducting polymer scaffold. The nanocomposite is loaded with an anti-inflammatory molecule, dexamethasone, and exhibits favorable electrical properties. In response to voltage stimulation, the nanocomposite releases drug with a linear release profile and a dosage that can be adjusted by altering the magnitude of stimulation. No drug passively diffuses from the composite in the absence of stimulation. In vitro cell culture experiments demonstrate that the released drug retains its bioactivity and that no toxic byproducts leach from the film during electrical stimulation. Decreasing the size and thickness of the GO nanosheets, by means of ultrasonication treatment prior to deposition into the nanocomposite, alters the film morphology, drug load, and release profile, creating an opportunity to fine-tune the properties of the drug delivery system to meet a variety of therapeutic needs. The high level of temporal control and dosage flexibility provided by the electrically controlled GO nanocomposite drug delivery platform make it an exciting candidate for on-demand drug delivery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films

BACKGROUND Graphene oxide (GO)can be dispersed through functionalization, or chemically converted to make different graphene-based nanocomposites with excellent mechanical and thermal properties. Chitosan, a partially deacetylated derivative of chitin, is extensively used for food packaging, biosensors, water treatment, and drug delivery. GO can be evenly dispersed in chitosan matrix through th...

متن کامل

UV-Assisted Reduction in BBL/Graphene Nanocomposite for Micropatterning

The graphene oxide (GO) film was reduced by ultraviolet (UV) irradiation which removed the oxygen-containing groups of the GO, confirmed by X-ray and Raman photoelectron spectroscopies, and scanning electron microscopy. The UV reduction of the GO film was performed at the selective areas for patterning. The sheet resistance of the GO film decreased from 10 (non-conducting) to 10 / by UV irrad...

متن کامل

Multilayered Graphene Nano-Film for Controlled Protein Delivery by Desired Electro-Stimuli

Recent research has highlighted the potential use of "smart" films, such as graphene sheets, that would allow for the controlled release of a variety of therapeutic drugs. Taking full advantage of these versatile conducting sheets, we investigated the novel concept of applying graphene oxide (GO) and reduced graphene oxide (rGO) materials as both barrier and conducting layers that afford contro...

متن کامل

Dual Nano-Carriers using Polylactide-block-Poly(N-isopropylacrylamide-random-acrylic acid) Polymerized from Reduced Graphene Oxide Surface for Doxorubicin Delivery Applications

The stimuli-responsive nanocomposites were designed as drug delivery nanocarriers. Thanks to promising properties such as large surface area and easy chemical functionalization, the graphene derivatives can be used for the drug delivery applications. For this purpose, in the current work, the poly(L,D-lactide)-block-poly(N-isopropylacrylamide-rand-acrylic acid) grafted from reduced graphene oxi...

متن کامل

Antimicrobial graphene polymer (PVK-GO) nanocomposite films.

The first report on the fabrication and application of a nanocomposite containing poly-N-vinyl carbazole (PVK) polymer and graphene oxide (GO) as an antimicrobial film was demonstrated. The antimicrobial film was 90% more effective in preventing bacterial colonization relative to the unmodified surface. More importantly, the nanocomposite thin film showed higher bacterial toxicity than pure GO-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014